Computer Graphics III – Radiometry

Jaroslav Křivánek, MFF UK

Jaroslav.Krivanek@mff.cuni.cz

Basic radiometric quantities

Image: Wojciech Jarosz

Direction, solid angle, spherical integrals

Direction in 3D

Direction = unit vector in 3D Cartesian coordinates x $\omega = [x, y, z], \quad x^2 + y^2 + z^2 = 1$ Spherical coordinates $\omega = [\theta, \varphi]$ $x = \sin \theta \cos \varphi$ $\theta = \arccos z$ $\theta \in [0,\pi]$ $y = \sin \theta \sin \varphi$ $\varphi \in [0, 2\pi]$ $\varphi = \arctan \frac{y}{2}$ $z = \cos \theta$ X

 \boldsymbol{Z}

- $\square \ \theta \dots polar \ angle angle \ from \ the Z axis$
- ϕ ... *azimuth* angle measured counter-clockwise from the *X* axis

Function on a unit sphere

- Function as any other, except that its argument is a direction in 3D
- Notation
 - $\square F(\omega)$
 - $\bullet F(x,y,z)$
 - **Γ**(θ,φ)
 - ...
 - Depends in the chosen representation of directions in 3D

Solid angle

Planar angle

- Arc length on a unit circle
- A full circle has 2π radians (unit circle has the length of 2π)

• Solid angle (steradian, sr)

- Surface area on an unit sphere
- Full sphere has 4π steradians

Differential solid angle

- "Infinitesimally small" solid angle around a given direction
- By convention, represented as a 3D vector
 - **D** Magnitude ... $d\omega$
 - Size of a differential area on the unit sphere
 - **Direction** ... ω
 - Center of the projection of the differential area on the unit sphere

n

dø

Differential solid angle

• (Differential) solid angle subtended by a differential area

Differential solid angle

Radiometry and photometry

Radiometry and photometry

- **"Radiometry** is a set of techniques for measuring electromagnetic radiation, including visible light.
- Radiometric techniques in optics characterize the distribution of the radiation's power in space, as opposed to **photometric** techniques, which characterize the light's interaction with the human eye."

(Wikipedia)

Radiometry and photometry

Radiometric quantities

 Radiant energy (zářivá energie) – Joule

- Radiant flux (zářivý tok) – Watt
- Radiant intensity (zářivost) – Watt/sr
- Denoted by subscript *e*

Photometric quantities

- Luminous energy (světelná energie) – Lumen-second, a.k.a. Talbot
- Luminous flux (světelný tok) – Lumen
- Luminous intensity (svítivost) – candela
- Denoted by subscript v

Spectral luminous efficiency K(λ)

$$K(\lambda) = \frac{d\Phi_{\lambda}}{d\Phi_{e\lambda}}$$

CG III (NPGR010) - J. Křivánek

Visual response to a spectrum:

$$\Phi = \int_{380\text{nm}}^{770\text{nm}} K(\lambda) \Phi_{e}(\lambda) \, \mathrm{d}\lambda$$

- Relative spectral luminous efficiency V(λ)
 - Sensitivity of the eye to light of wavelength λ relative to the peak sensitivity at $\lambda_{max} = 555$ nm (for photopic vision).
 - □ CIE standard 1924

Obr. 6. Poměrná spektrální světelná účinnost při fotopickém (denním) a skotopickém (soumrakovém) vidění.

CG III (NPGR010) - J. Křivánek

Radiometry

 More fundamental – photometric quantities can all be derived from the radiometric ones

Photometry

 Longer history – studied through psychophysical (empirical) studies long before Maxwell equations came into being.

Radiometric quantities

Transport theory

Empirical theory describing flow of "energy" in space

Assumption:

- Energy is continuous, infinitesimally divisible
- Needs to be taken so we can use derivatives to define quantities
- Intuition of the "energy flow"
 - Particles flying through space
 - No mutual interactions (implies linear superposition)
 - Energy density proportional to the density of particles
 - This intuition is abstract, empirical, and has nothing to do with photons and quantum theory

Radiant energy – Q[J]

Unit: Joule, J

Spectral radiant energy – Q[J]

- Energy of light at a specific wavelength
 - "Density of energy w.r.t wavelength"

$$Q_{\lambda}(S, \langle t_1, t_2 \rangle, \lambda) = \lim_{\substack{d(\lambda_1, \lambda_2) \to 0 \\ \lambda \in \langle \lambda_1, \lambda_2 \rangle}} \frac{Q(S, \langle t_1, t_2 \rangle, \langle \lambda_1, \lambda_2 \rangle)}{\mu \langle \lambda_1, \lambda_2 \rangle} = \text{formally} = \frac{\mathrm{d}Q}{\mathrm{d}\lambda}$$

We will leave out the subscript and argument λ for brevity
We always consider spectral quantities in image synthesis

Photometric quantity:

Luminous energy, unit Lumen-second aka Talbot

Radiant flux (power) – $\Phi[W]$

How quickly does energy "flow" from/to surface S?
"Energy density w.r.t. time"

$$\Phi(S,t) = \lim_{\substack{d\langle t_1, t_2 \rangle \to 0 \\ t \in \langle t_1, t_2 \rangle}} \frac{Q(S, \langle t_1, t_2 \rangle)}{\mu \langle t_1, t_2 \rangle} = (\text{formálně}) = \frac{\mathrm{d}Q}{\mathrm{d}t}$$

- **Unit**: Watt *W*
- Photometric quantity:
 - Luminous flux, unit Lumen

Irradiance– E [W.m⁻²]

• What is the spatial flux density at a given point **x** on a surface *S*?

$$E(\vec{x}) = \lim_{\substack{d(S) \to 0 \\ \vec{x} \in S, S \subseteq P}} \frac{\Phi_i(S)}{\mu(S)} = (\text{formálně}) = \frac{\mathrm{d}\Phi_i}{\mathrm{d}S}$$

- Always defined w.r.t some point **x** on *S* with a specified surface normal *N*(**x**).
 - □ **Irradiance DOES depend on** *N***(x)** (Lambert law)
- We're only interested in light arriving from the "outside" of the surface (given by the orientation of the normal).

Irradiance – E [W.m⁻²]

- **Unit**: Watt per meter squared *W*.*m*⁻²
- Photometric quantity:
 - □ Illuminance, unit Lux = lumen.m⁻²

light meter (cz: expozimetr)

Lambert cosine law

Johan Heindrich Lambert, *Photometria*, 1760

$$E = \frac{\Phi}{A}$$

Lambert cosine law

Johan Heindrich Lambert, *Photometria*, 1760

Φ

CG III (NPGR010) - J. Křivánek

Irradiance Map or Light Map

Typical Values of Illuminance [lm/m²]

Sunlight plus skylight100,000 luxSunlight plus skylight (overcast)10,000Interior near window (daylight)1,000Artificial light (minimum)100Moonlight (full)0.02Starlight0.0003

Radiant exitance – *B* [W.m⁻²]

- Same as irradiance, except that it describes *exitant* radiation.
 - The exitant radiation can either be directly emitted (if the surface is a light source) or reflected.
- Common name: radiosity
- **Denoted**: *B*, *M*
- **Unit**: Watt per meter squared W.m⁻²
- Photometric quantity:
 - □ Luminosity, unit Lux = lumen.m⁻²

Radiant intensity – *I* [W.sr⁻¹]

• Angular flux density in direction ω

$$I(\omega) = \frac{d\Phi(\omega)}{d\omega}$$

- **Definition:** Radiant intensity is the power per unit solid angle emitted by a point source.
- Unit: Watt per steradian W.sr⁻¹
- Photometric quantity
 - Luminous intensity, unit Candela (cd = lumen.sr⁻¹), SI base unit

Point light sources

- Light emitted from a single point
 - Mathematical idealization, does not exist in nature
- Emission completely described by the radiant intensity as a function of the direction of emission: *I*(ω)
 - Isotropic point source
 - Radiant intensity independent of direction
 - Spot light
 - Constant radiant intensity inside a cone, zero elsewhere
 - General point source
 - Can be described by a **goniometric diagram**
 - **D** Tabulated expression for $I(\omega)$ as a function of the direction ω
 - Extensively used in illumination engineering

Spot Light

- Point source with a directionallydependent radiant intensity
- Intensity is a function of the deviation from a reference direction d :

$$I(\omega) = f(\angle \omega, \mathbf{d})$$

E.g.

$$I(\omega) = I_o \cos \angle(\omega, \mathbf{d}) = I_o(\omega \cdot \mathbf{d})$$
$$I(\omega) = \begin{cases} I_o & \angle(\omega, \mathbf{d}) < \tau \\ 0 & \text{otherwise} \end{cases}$$

 What is the total flux emitted by the source in the cases (1) a (2)? (See exercises.)

Light Source Goniometric Diagrams

CS348B Lecture 4

Radiance – L [W.m⁻².sr⁻¹]

 Spatial and directional flux density at a given location x and direction ω.

$$L(\mathbf{x},\omega) = \frac{d^2 \Phi}{\cos \theta dA d\omega}$$

Definition: *Radiance* is the power per unit area
perpendicular to the ray and per unit solid angle in the direction of the ray.

Radiance – L [W.m⁻².sr⁻¹]

 Spatial and directional flux density at a given location x and direction ω.

$$L(\mathbf{x},\omega) = \frac{d^2 \Phi}{\cos \theta dA d\omega}$$

- **Unit**: *W*. m⁻².sr⁻¹
- Photometric quantity
 - Luminance, unit candela.m⁻² (a.k.a. Nit used only in English)

The cosine factor $\cos \theta$ in the definition of radiance

- $\cos \theta$ compensates for the decrease of irradiance with increasing θ
 - The idea is that we do not want radiance to depend on the mutual orientation of the ray and the reference surface
- If you illuminate some surface while rotating it, then:
 - Irradiance does change with the rotation (because the actual spatial flux density changes).
 - Radiance does <u>not</u> change (because the flux density change is exactly compensated by the cos θ factor in the definition of radiance). And that's what we want.

Typical Values of Luminance [cd/m²]

Surface of the sun	2,000,000,000 nit	
Sunlight clouds	30,000	
Clear day	3,000	
Overcast day	300	
Moon	0.03	

CS348B Lecture 4

The Sky Radiance Distribution

Plate 5-16. Fisheye view of clear sky at the South Pole. (Photographed by the author)

Plate 5-17. View of slightly hazy sky in Wisconsin. (Photographed by the author)

From Greenler, Rainbows, halos and glories

CS348B Lecture 4

Gazing Ball \Rightarrow Environment Maps

Miller and Hoffman, 1984

- Photograph of mirror ball
- Maps all spherical directions to a to circle
- Reflection direction indexed by normal
- Resolution function of orientation

CS348B Lecture 4

Environment Maps

Interface, Chou and Williams (ca. 1985) CS348B Lecture 4 Pat Hanrahan, 2006

Calculation of the remaining quantities from radiance

$$E(\mathbf{x}) = \int_{H(\mathbf{x})} L(\mathbf{x},\omega) \cos \theta \, \mathrm{d}\omega$$

$$\Phi = \int_{A} E(\mathbf{x}) \, \mathrm{d}A_{\mathbf{x}}$$
$$= \int_{A} \int_{H(\mathbf{x})} L(\mathbf{x}, \omega) \cos \theta \, \mathrm{d}\omega \, \mathrm{d}A_{\mathbf{x}}$$

 $\cos\theta d\omega$ = projected solid angle

 $H(\mathbf{x})$ = hemisphere above the point \mathbf{x}

Area light sources

- Emission of an area light source is fully described by the emitted radiance $L_e(\mathbf{x}, \omega)$ for all positions on the source \mathbf{x} and all directions ω .
- The total emitted power (flux) is given by an integral of L_e(**x**,ω) over the surface of the light source and all directions.

$$\Phi = \int_{A} \int_{H(\mathbf{x})} L_e(\mathbf{x},\omega) \cos\theta \, \mathrm{d}\omega \, \mathrm{d}A$$

Properties of radiance (1)

- Radiance is constant along a ray in vacuum
 - Fundamental property for light transport simulation
 - This is why radiance is the quantity associated with rays in a ray tracer
 - Derived from energy conservation (next two slides)

Energy conservation along a ray

Energy conservation along a ray

Properties of radiance (2)

Sensor response (i.e. camera or human eye) is directly proportional to the value of radiance reflected by the surface visible to the sensor.

$$\underline{\mathsf{R}} = \int_{\mathsf{A}_2} \int_{\Omega} \mathsf{L}_{in}(\mathsf{A}, \omega) \cdot \mathbf{cos} \, \theta \, d\omega \, d\mathsf{A} = \underline{\mathsf{L}_{in} \cdot \mathsf{T}}$$

CG III (NPGR010) - J. Křivánek

Incoming / outgoing radiance

Radiance is **discontinuous** at an interface between materials

- Incoming radiance $-L^i(\mathbf{x},\omega)$
 - radiance just before the interaction (reflection/transmission)
- Outgoing radiance $-L^{o}(\mathbf{x},\omega)$
 - radiance just after the interaction

Radiometric and photometric terminology

Fyzika	Radiometrie	Fotometrie
<i>Physics</i>	Radiometry	Photometry
Energie	Zářivá energie	Světelná energie
<i>Energy</i>	<i>Radiant energy</i>	<i>Luminous energy</i>
Výkon (tok)	Zářivý tok	Světelný tok (výkon)
<i>Power (flux)</i>	<i>Radiant flux (power)</i>	<i>Luminous power</i>
Hustota toku	Ozáření	Osvětlení
<i>Flux density</i>	<i>Irradiance</i>	<i>Illuminance</i>
dtto	Intenzita vyzařování <i>Radiosity</i>	??? Luminosity
Úhlová hustota toku	Zář	Jas
<i>Angular flux density</i>	<i>Radiance</i>	Luminance
???	Zářivost	Svítivost
Intensity	<i>Radiant Intensity</i>	<i>Luminous intensity</i>

Next lecture

Light reflection on surfaces